I denne artikel vil vi udforske den chokerende historie om Xenonisotoper, et emne, der har fanget folks opmærksomhed rundt om i verden. Over tid har Xenonisotoper spillet en afgørende rolle i adskillige menneskers liv og påvirket ikke kun deres handlinger, men også deres tanker og følelser. Gennem en detaljeret og udtømmende analyse håber vi at kaste lys over de forskellige aspekter af Xenonisotoper, fra dets oprindelse til dets nuværende implikationer. Denne artikel søger at give læseren et holistisk syn på Xenonisotoper med det formål at fremme en dybere og rigere forståelse af dette fascinerende emne.
Naturligt forekommende xenon (Xe) består af 9 stabile isotoper. Man har forudsagt at isotoperne 124Xe, 134Xe og 136Xe gennemgår et dobbelt betahenfald, men da ingen nogensinde har observeret dette, har man antaget at de er stabile. [1] [2] Xenon har det næsthøjeste antal af stabile isotoper, kun overgået af tin som har 10 stabile isotoper. [3] Ud over de 8 stabile xenonisotoper, så er der over 40 ustabile isotoper som er blevet undersøgt. 129Xe dannes af betahenfald fra 129I (halveringstid: 16 millioner år). 131mXe, 133Xe, 133mXe, og 135Xe er nogle af de fissions produkter man får af 235U og 239Pu[4] og derfor bliver de brugt som indikatorer i forbindelse med en nuklear eksplosion.
Den unaturlige isotop 135Xe har en væsentlig betydning for driften af nuklear fissions reaktorer (atomreaktorer). 135Xe har et stort neutrontværsnit for termoneutroner, nemlig 2,65x106 barns[5], så den fungerer som en neutron absorbere eller "gift" som kan sænke hastigheden på kernereaktionen eller stoppe den helt, efter den har været i drift i en periode. Dette blev opdaget i de første atomreaktorer, som blev bygget i forbindelse med det amerikanske projekt: Manhattan Project, til plutonium produktion.
Man finder høje koncentrationer af radioaktive xenonisotoper udstråle fra atomreaktorer, på grund af udledningen af fissions gasser, som stammer fra sprækkede brændselsstave[6] eller fra spaltningen af uran i kølevandet[7], dog er koncentrationen af disse isotoper normalt ret lave sammenlignet med naturligt forekommende ædelgasser som for eksempel 222Rn.
Da xenon er et sporingsstof for to moderisotoper, er xenon en værdifuldt værktøj når det kommer til at studere dannelen af solsystemet, da man kan se på forholdet af xenonisotoper i metoritter. Iod-xenon datering giver tiden i mellem nukleosyntesen til kondensationen af faste objekter fra solsystemets dannelse. Xenonisotoper er også et vigtigt værktøj til at forstå jordisk differentiation[8]. Man tror at et overskud af 129Xe som er fundet i gasser fra en kuldioxid brønd i New Mexico, skulle stamme fra henfald af gasser fra jordens kappe, kort efter jorden blev dannet[9][4] .
Nuklid symbol |
Z(p) | N(n) | Isotopisk masse (u) |
Halveringstid | Nuklear spin |
Repræsentativ isotopisk sammensætning (molfraktion) |
Interval af naturlig variation (molfraktion) |
---|---|---|---|---|---|---|---|
energitilførsel | |||||||
110Xe | 54 | 56 | 109.94428(14) | 310(190) ms | 0+ | ||
111Xe | 54 | 57 | 110.94160(33)# | 740(200) ms | 5/2+# | ||
112Xe | 54 | 58 | 111.93562(11) | 2.7(8) s | 0+ | ||
113Xe | 54 | 59 | 112.93334(9) | 2.74(8) s | (5/2+)# | ||
114Xe | 54 | 60 | 113.927980(12) | 10.0(4) s | 0+ | ||
115Xe | 54 | 61 | 114.926294(13) | 18(4) s | (5/2+) | ||
116Xe | 54 | 62 | 115.921581(14) | 59(2) s | 0+ | ||
117Xe | 54 | 63 | 116.920359(11) | 61(2) s | 5/2(+) | ||
118Xe | 54 | 64 | 117.916179(11) | 3.8(9) min | 0+ | ||
119Xe | 54 | 65 | 118.915411(11) | 5.8(3) min | 5/2(+) | ||
120Xe | 54 | 66 | 119.911784(13) | 40(1) min | 0+ | ||
121Xe | 54 | 67 | 120.911462(12) | 40.1(20) min | (5/2+) | ||
122Xe | 54 | 68 | 121.908368(12) | 20.1(1) h | 0+ | ||
123Xe | 54 | 69 | 122.908482(10) | 2.08(2) h | 1/2+ | ||
123mXe | 185.18(22) keV | 5.49(26) µs | 7/2(-) | ||||
124Xe | 54 | 70 | 123.905893(2) | STABLE | 0+ | 0.000952(3) | |
125Xe | 54 | 71 | 124.9063955(20) | 16.9(2) h | 1/2(+) | ||
125m1Xe | 252.60(14) keV | 56.9(9) s | 9/2(-) | ||||
125m2Xe | 295.86(15) keV | 0.14(3) µs | 7/2(+) | ||||
126Xe | 54 | 72 | 125.904274(7) | STABLE | 0+ | 0.000890(2) | |
127Xe | 54 | 73 | 126.905184(4) | 36.345(3) d | 1/2+ | ||
127mXe | 297.10(8) keV | 69.2(9) s | 9/2- | ||||
128Xe | 54 | 74 | 127.9035313(15) | STABLE | 0+ | 0.019102(8) | |
129Xe | 54 | 75 | 128.9047794(8) | STABLE | 1/2+ | 0.264006(82) | |
129mXe | 236.14(3) keV | 8.88(2) d | 11/2- | ||||
130Xe | 54 | 76 | 129.9035080(8) | STABLE | 0+ | 0.040710(13) | |
131Xe | 54 | 77 | 130.9050824(10) | STABLE | 3/2+ | 0.212324(30) | |
131mXe | 163.930(8) keV | 11.934(21) d | 11/2- | ||||
132Xe | 54 | 78 | 131.9041535(10) | STABLE | 0+ | 0.269086(33) | |
132mXe | 2752.27(17) keV | 8.39(11) ms | (10+) | ||||
133Xe | 54 | 79 | 132.9059107(26) | 5.2475(5) d | 3/2+ | ||
133mXe | 233.221(18) keV | 2.19(1) d | 11/2- | ||||
134Xe | 54 | 80 | 133.9053945(9) | STABLE | 0+ | 0.104357(21) | |
134m1Xe | 1965.5(5) keV | 290(17) ms | 7- | ||||
134m2Xe | 3025.2(15) keV | 5(1) µs | (10+) | ||||
135Xe | 54 | 81 | 134.907227(5) | 9.14(2) h | 3/2+ | ||
135mXe | 526.551(13) keV | 15.29(5) min | 11/2- | ||||
136Xe | 54 | 82 | 135.907219(8) | STABLE | 0+ | 0.088573(44) | |
136mXe | 1891.703(14) keV | 2.95(9) µs | 6+ | ||||
137Xe | 54 | 83 | 136.911562(8) | 3.818(13) min | 7/2- | ||
138Xe | 54 | 84 | 137.91395(5) | 14.08(8) min | 0+ | ||
139Xe | 54 | 85 | 138.918793(22) | 39.68(14) s | 3/2- | ||
140Xe | 54 | 86 | 139.92164(7) | 13.60(10) s | 0+ | ||
141Xe | 54 | 87 | 140.92665(10) | 1.73(1) s | 5/2(-#) | ||
142Xe | 54 | 88 | 141.92971(11) | 1.22(2) s | 0+ | ||
143Xe | 54 | 89 | 142.93511(21)# | 0.511(6) s | 5/2- | ||
144Xe | 54 | 90 | 143.93851(32)# | 0.388(7) s | 0+ | ||
145Xe | 54 | 91 | 144.94407(32)# | 188(4) ms | (3/2-)# | ||
146Xe | 54 | 92 | 145.94775(43)# | 146(6) ms | 0+ | ||
147Xe | 54 | 93 | 146.95356(43)# | 130(80) ms | 3/2-# |
{{cite book}}
: |pages=
har ekstra tekst (hjælp)
{{cite book}}
: |pages=
har ekstra tekst (hjælp)